Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.

نویسندگان

  • Jan C Schöning
  • Corinna Streitner
  • Damian R Page
  • Sven Hennig
  • Kenko Uchida
  • Eva Wolf
  • Masaki Furuya
  • Dorothee Staiger
چکیده

The clock-regulated RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein) influences circadian oscillations of its transcript by negative feedback at the post-transcriptional level. Here we show that site-specific mutation of one conserved arginine to glutamine within the RNA recognition motif impairs binding of recombinant AtGRP7 to its pre-mRNA in vitro. This correlates with the loss of the negative auto-regulation in vivo: in transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox), a shift occurs to an alternatively spliced AtGRP7 transcript that decays rapidly, and thus does not accumulate to high levels. In contrast, constitutive ectopic overexpression of the AtGRP7-RQ mutant does not lead to alternative splicing of the endogenous AtGRP7 transcript and concomitant damping of the oscillations. This highlights the importance of AtGRP7 binding to its own transcript for the negative auto-regulatory circuit. Moreover, regulation of AtGRP7 downstream targets also depends on its RNA-binding activity, as AtGRP8 and other targets identified by transcript profiling of wild-type and AtGRP7-ox plants using fluorescent differential display are negatively affected by AtGRP7 but not by AtGRP7-RQ. In mutants impaired in the nonsense-mediated decay (NMD) components UPF1 or UPF3, levels of the alternatively spliced AtGRP7 and AtGRP8 transcripts that contain premature termination codons are strongly elevated, implicating UPF1 and UPF3 in the decay of these clock-regulated transcripts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana

The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7) and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of trans...

متن کامل

AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.

The endogenous clock that drives circadian rhythms is thought to communicate temporal information within the cell via cycling downstream transcripts. A transcript encoding a glycine-rich RNA-binding protein, Atgrp7, in Arabidopsis thaliana undergoes circadian oscillations with peak levels in the evening. The AtGRP7 protein also cycles with a time delay so that Atgrp7 transcript levels decline w...

متن کامل

The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.

The RNA binding protein AtGRP7 is part of a circadian slave oscillator in Arabidopsis thaliana that negatively autoregulates its own mRNA, and affects the levels of other transcripts. Here, we identify a novel role for AtGRP7 as a flowering-time gene. An atgrp7-1 T-DNA mutant flowers later than wild-type plants under both long and short days, and independent RNA interference lines with reduced ...

متن کامل

The nitrate reductase circadian system. The central clock dogma contra multiple oscillatory feedback loops.

The ability of plants and other organisms to show endogenous circadian rhythms and to adapt to daily and photoperiodic events is often associated with a central molecular clock (Bünning, 1973; Edmunds, 1988). Using the oscillatory nitrate reductase (NR) system as an example, we argue that circadian rhythms and their functionality can be perceived without postulating a central molecular chronome...

متن کامل

Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis

The hnRNP-like glycine-rich RNA-binding protein AtGRP7 regulates pre-mRNA splicing in Arabidopsis. Here we used small RNA-seq to show that AtGRP7 also affects the miRNA inventory. AtGRP7 overexpression caused a significant reduction in the level of 30 miRNAs and an increase for 14 miRNAs with a minimum log2 fold change of ± 0.5. Overaccumulation of several pri-miRNAs including pri-miR398b, pri-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 52 6  شماره 

صفحات  -

تاریخ انتشار 2007